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“Biology is likely far too complex and messy to ever be encapsulated as a simple

set of neat mathematical equations. But just as mathematics turned out to be

the right description language for physics, biology may turn out to be the perfect

type of regime for the application of AI”

Demis Hassabis, CEO of DeepMind and Isomorphic Labs
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Abstract

Molecular scoring, in which a machine learning model is used as an in-silico

proxy for an otherwise expensive and slow in-silico or in-vivo experiment, is

a promising direction to improve the efficiency of the drug discovery process.

While it is commonly assumed that OOD generalization is needed in molecular

scoring, a principled and complete problem specification of the OOD problem

as encountered in ongoing drug discovery programs is still missing.

We therefore propose the Molecular Out-Of-Distribution (MOOD) framework,

which consists of two parts. With the MOOD specification, we propose a new

set of evaluation standards that more closely matches the situations encoun-

tered in ongoing drug discovery programs. Specifically, we propose the usage

of a continuous, representation-dependent and distance-based OOD metric to

characterize, compare and replicate realistic distribution shifts. In the MOOD

investigation, we use the newly proposed evaluation standards to benchmark

various tools on how they affect OOD generalization.

We find that current evaluation standards do not match the situations encoun-

tered in practice and that while some effective methods have been developed

over the years to improve generalization, more efforts are needed to close the

gap between advances in academia and industry pain points. To that end, we

hope that MOOD can help to inform future research directions and to more

efficiently direct resources in ongoing drug discovery programs.
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1

Introduction

Drug-discovery is the process of identifying and testing potential new medicines (or drugs).

It is a multi-disciplinary process that builds upon state-of-the-art knowledge from fields

such as biology, chemistry, and computer science. In many cases, a drug is a small molecule

that either inhibits or activates a protein to achieve a medicinal effect. Even when molecules

with the desired activity can be found, this does not automatically imply that they are

viable drugs. For example, a candidate drug could be too toxic to humans or too difficult

to organically synthesize. Due to the presence of several rate-limiting steps and its overall

high failure rate, the average cost of bringing a single new drug to market is in the billions

and the whole process generally requires over a decade (1, 2, 3).

Computational (or in-silico) methods hold the promise to improve the efficiency of the

drug discovery process. These methods could enable efficient exploration of the chemi-

cal space and reduce the need for slow, expensive and arguably unethical experiments. To

model the highly complex biochemical systems of interest in drug discovery, machine learn-

ing (ML) has proven an effective and efficient tool (4, 5, 6). More recently, the application

of deep learning (DL) to biochemistry has attracted lots of attention (7, 8, 9, 10, 11, 12).

DL comprises a particular class of ML methods which can extract sophisticated represen-

tations directly from the data, opening up possibilities in cases where a system is either

not yet well enough understood or too complex to manually engineer a set of informative

features. Over the years, a diverse toolbox of ML techniques has been developed to sup-

port human researchers in the experiments they conduct throughout the drug discovery

process. In this study, we focus on molecular scoring, in which an ML model is trained to

predict the outcome of a biochemical experiment.
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1. INTRODUCTION

While ML has disrupted several scientific disciplines, such as natural language processing

and computer vision, it has proven more difficult to achieve successes outside of academia.

A common assumption in ML is that the train and test data are independent and identically

distributed. This is known as the i.i.d. assumption. In the i.i.d. setting, ML models are

prone to learn statistically significant but spurious correlations that do not generalize well

to differently distributed datasets. In practice, however, the i.i.d. assumption is difficult

to satisfy. This causes ML models to disappoint outside of the controlled environments

of academia (13). In drug discovery, a model could, for example, be expected to fail

on molecules that are structurally dissimilar from the training data. The decrease in

performance of an ML model on differently distributed data is formalized by the domain

shift problem. Finding solutions to it is an active field of research (14, 15), which is broadly

referred to as out-of-distribution (OOD) generalization.

This raises the question to what extent the i.i.d. assumption holds for the molecular

datasets used in drug discovery. After all, human chemists do not randomly sample the

chemical space, but build upon empirical and theoretical knowledge to bias their explo-

ration. A chemist will, for example, iteratively make small structural changes to refine a

molecule. We could reasonably expect this human bias to transfer over to the datasets

used in ML. Additionally, due to the sheer size of the space of drug-like molecules (esti-

mates range from 1020 (16) to 1063 (17)), we could expect to regularly encounter out-of-

distribution molecules on which our models do not perform as well. Yet the i.i.d. assump-

tion is, either implicitly or explicitly, assumed to hold in most molecular scoring tasks in

ongoing drug discovery programs. In this thesis we therefore set out to challenge the i.i.d

assumption in molecular scoring by providing a complete specification of the OOD problem

as encountered in drug discovery programs and by investigating the effect and importance

of various tools to improve generalization through the lens of this new specification.

The rest of this thesis is structured as follows: Chapter 2 provides a succinct summary

of relevant background knowledge by discussing the drug discovery process and the role

of machine learning within it. Chapter 3 provides an overview of prior work that is more

directly related to the research conducted in this thesis. Chapter 4 describes the Molecular

Out-Of-Distribution (or MOOD) framework, which is the main contribution of this thesis

and constitutes various experiments and the results thereof. Finally, Chapter 5 summarizes

the outcomes of this research and suggests future research directions.
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2

Background

The goal of this chapter is to provide the reader with the relevant background knowledge to

understand the rest of this thesis. In Section 2.1, we will give an overview of the different

steps of the drug discovery process. In Section 2.2, we will detail the role of ML within that

process, specifically focusing on the applications of molecular scoring. Finally, as the low

quantity and quality of data in molecular scoring pose an additional challenge compared

to other ML domains, Section 2.3 will discuss molecular data and some of the ways this

challenge is being tackled.

2.1 The Drug Discovery Process

The drug discovery and development process encompasses all the steps by which a new

drug is brought to market (see Figure 2.1). The steps are completed sequentially and the

number of candidate drugs that is considered in each step decreases exponentially. Due to

the sequential nature of this process, there are several rate-limiting steps (i.e. bottlenecks)

that have to be optimized simultaneously to improve the overall efficiency. In this work,

the focus is on drug discovery. Drug discovery can generally be divided into four phases:

target discovery, hit generation, hit-to-lead and lead optimization. In this section, we will

discuss how each of these steps is traditionally structured.

In target discovery, the goal is to identify and validate a drug target (19). A target is a

biochemical entity in the human cell that has a causal association with a disease. There

exist different types of targets (e.g. a macromolecule such as a protein or a nucleic acid)

and there are different mechanisms of action to affect a target and achieve a medicinal effect

(e.g. inhibition or activation). In target discovery it is essential that we have a fundamental

3



2. BACKGROUND

Figure 2.1: The drug discovery and development process - Target discovery and drug
discovery are considered separate phases here. In this work, they are considered to be part of
the same phase. Taken from Rudin et al. (18).

understanding of both the function and structure of the human cell on a molecular level.

This is why target discovery in pharamaceutical companies is closely entangled with basic

research in academia and not always considered part of the drug discovery process.

In hit generation, the goal is to identify a set of molecules from a chemical library with

promising activity against the target. This is accomplished by a high-throughput screening

(HTS) (20). HTS is a costly, large scale experiment that measures the ability of a molecule

to modulate a target of interest. This can be done practically in a specialized lab or in-

silico (e.g. through simulations). The hit molecules are used as a starting point for further

experimentation in the hit-to-lead phase.

In hit-to-lead, the goal is to iteratively filter and refine the hit molecules to come to a set

of lead molecules which all surpass a predetermined, in-vitro activity threshold against the

drug target. This is done through a cyclic approach called the design-make-test-analyze

(DMTA) cycle (22) (see Figure 2.2). This cycle is repeated until a satisfactory number of

lead molecules is found or until time or money runs out.

In lead-optimization, the goal is to safely transfer the in-vitro efficacy of the lead molecules

to in-vivo efficacy by optimizing for multiple pragmatic properties (23). These properties

are generally summarized as absorption, distribution, metabolism, excretion and toxicity

4



2.2 Applications of ML in Drug Discovery

Figure 2.2: The DMTA cycle - Through this cyclic process a set of molecules is iteratively
refined. Taken from (21).

(ADMET) and describe how a drug enters, spreads through and leaves the body and how

harmful the drug is to humans. Other properties do exist and the specific properties of

interest depend on the program. For example, a drug which is taken orally has different

requirements than a drug which is given by an intravenous injection. When a drug is

found with the desired binding activity and the right set of ADMET properties, the drug

discovery process ends and the drug is prepared for clinical trials.

Now that we have provided a basic overview of the drug discovery process, we will next

discuss the role of ML within this process.

2.2 Applications of ML in Drug Discovery

The usage of data-driven methods in drug discovery is not a new idea. These methods are

commonly referred to as Quantitative Structure-Activity Relationship (QSAR) models and

aim to - as the name suggests - establish a quantitative relationship between a molecule’s

structure and its activity. ML provides one way to implement a QSAR model (24).

Over the years a diverse toolkit of such machine learning methods (6) has been developed

to speed up and automate different steps of the drug discovery process. In most of these

methods, the aim is to accurately reproduce and automate the experiments that human

chemists conduct throughout the drug discovery process, but some other machine learning
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2. BACKGROUND

applications go beyond our theoretical understanding and open up entirely new research

directions (25, 26). As machine learning can more efficiently leverage more data from more

complex environments than humans can, its application to drug discovery tackles multiple

bottlenecks simultaneously. With an increase in compute and data, machine learning holds

the promise to push the boundaries of what is ought to be possible.

Providing an exhaustive summary of all the different ML methods in drug discovery is

beyond the scope of this thesis. In this work we focus on molecular scoring. In molecular

scoring, a model predicts a molecule’s activity (e.g. the binding activity, solubility or the

toxicity) and thus serves as an in-silico proxy to an in-vitro or in-vivo experiment. These

models serve three main purposes in drug discovery:

1. Virtual screening: In virtual screening (4, 27, 28, 29), a molecular scoring model

is used as a scalable method to automatically and efficiently screen (i.e. rank)

the molecules in large, chemical libraries. These libraries consist of readily pur-

chasable molecules that are offered by chemical marketplaces such as Molport. Since

all molecules are thus readily available, it is relatively easy to experimentally vali-

date the model’s predictions. As such, virtual screening offers a cheaper and faster

alternative to HTS and to the "test" step in the DMTA cycle.

2. De-novo generation (optimization): In de-novo generation (30, 31, 32), the goal

is to design generative models from which candidate drugs can be sampled. As gener-

ative methods do not select candidates from a predefined, chemical library, they can

cover a larger portion of the chemical space they learn to represent than in virtual

screening. De-novo generation is often split in generation (i.e. generating a valid

molecule) and optimization (i.e. generating a good molecule). Since a good molecule

optimizes multiple constraints simultaneously (e.g. binding, ADMET, etc.), this con-

stitutes the biggest challenge. In de-novo generation, molecular scoring models func-

tion as cheap proxies for the actual experiments that we are trying to optimize (33).

Generative models are applied in the "design" step of the DMTA cycle and are thus

applied iteratively to propose a batch of molecules. After experimentally verifying a

batch, the model is retrained.

3. QSAR modeling: By carefully assessing how a ML model comes to its prediction,

it can serve as a QSAR model. In QSAR modeling, it is essential that a relation

is established between the structure and activity of a molecule that can then be

6
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2.3 Molecular Data

intuitively communicated to a biologist or chemist. This is outside the scope of this

thesis and will not be discussed any further.

It is worth noting that in molecular scoring, a model’s predictions inform which molecules

will be experimentally validated next. Since this experimental validation is expensive, it

is important that we can efficiently balance between exploration and exploitation through-

out the different DMTA cycles and this requires not just good generalization in terms of

performance, but also well-calibrated uncertainty estimates.

Now that we have discussed the applications of ML in drug discovery, we will next discuss

some of the data challenges that are specific to this domain.

2.3 Molecular Data

Figure 2.3: Molecular representations - Different representations for molecular data in
machine learning. Taken from Sanchez-Lengeling et al. (32).

A machine learning model is only as good as the data it is trained on. In molecular

scoring, data is gathered by running biological assays (or bioassays). Bioassays are experi-

ments that are conducted in a laboratory. They are expensive and subject to many sources

7



2. BACKGROUND

of variation that are hard to control for. Due to the high costs, the amount of data for

any particular task is small. For example, most datasets in Therapeutics Data Commons

(TDC) (34), a collection of publicly available machine learning datasets for drug discovery,

contain in the order of 102 to 105 molecules. The majority of these molecules tests negative

against the biological activity of interest, resulting in an imbalanced dataset. For example,

when predicting a molecule’s binding activity against a target, most molecules won’t show

any interesting activity due to the strong structural constraints required for binding. Yet

in using the model, it is exactly the molecules that do bind to the target that are of interest

as these form the set of drug candidates. Compared to other machine learning domains

such as computer vision and natural language processing, the lower quantity and quality

of data in drug discovery poses an additional challenge.

There’s several techniques to address this challenge. Most relevant to this thesis, is

the usage of different ways to represent molecules and the usage of different pre-training

techniques to make model training more efficient.

2.3.1 Molecular representations

A molecule can be represented in a variety of ways (see Figure 2.3) that differ in the

information they carry, their suitability for generalization, and their compatibility with

machine learning techniques. Molecular fingerprints, such as the Extended-Connectivity

Fingerprint (ECFP) (35) and the Molecular ACCess System (MACCS) (36) fingerprint,

compute a structural descriptor of a molecule. These structural descriptors are informed

by domain knowledge. Although more advanced representations have been developed since

they were first introduced, fingerprints remain a popular option in drug discovery due to

their ease of use and competitive performance in terms of both efficacy and efficiency (37).

With the rise of deep learning, neural networks are increasingly used to directly learn such

representations from the data (38). A natural way of describing a molecule in this setting

is through a graph in which the nodes represent atoms and the edges represent atomic

bonds. Using this representation, graph neural networks (39) (GNNs) have been success-

fully applied in drug discovery. Another popular option to represent a molecular structure

is the simplified molecular-input line-entry system (or SMILES ) string (40). SMILES de-

fines a grammar to encode a molecule’s structure in text. With this textual representation,

we can leverage the more mature line of research in natural language processing to model

the data. For example, modeling chemical reactions can now be framed as a translation

problem between two SMILES strings (41). Picking the right molecular representation is

8



2.3 Molecular Data

an important factor in optimizing the performance and generalization of machine learning

in drug discovery.

2.3.2 Pre-training techniques

Another technique to improve performance in a low data setting is to pre-train a model on

different but related tasks and then fine-tune. To ensure that the pre-training is actually

helpful to the downstream tasks, we can leverage domain knowledge. Specifically, we

know that molecules are governed by quantum mechanics (42) and that their structure is

important to their function (43, 44). Therefore, during pre-training, we can for example use

a molecule’s quantum properties (45, 46) or its most-likely three-dimensional configurations

(called conformers) (47). Since this data is not task-specific, we can leverage more data

sources. Additionally, there also exist accurate simulators that, given enough compute,

can be used to construct a sufficiently large dataset. Alternatively, we can leverage pre-

training techniques from other domains. Specifically, the usage of a text-based molecular

representation allows the naive application of pre-training techniques from NLP (11, 48).

Despite the structural differences between molecular and liguistic data, these methods

have achieved some success. The goal of pre-training is to learn a representation that is

expected to efficiently transfer to the downstream tasks relevant in drug discovery, making

the fine-tuning more data efficient.

9



2. BACKGROUND
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3

Related Work

While this work presents a first complete specification of the OOD problem as it is en-

countered in live drug discovery programs, the importance of generalization in molecular

scoring has long been established. We divide the related work into three categories:

• Model analysis: Work in this category uses the data a model was trained on or

the model itself to identify a part of the chemical space on which the model can

be expected to perform well. In molecular scoring, the concept of the applicability

domain falls into this category and will be discussed in Section 3.1.

• Model selection: Work in this category uses careful evaluation to select one model

out of many that is expected to generalize the best. In molecular scoring, the usage

of the different data splits falls into this category and will be discussed in Section 3.2.

• Model design: Work in this category relaxes the i.i.d. assumption and aims to

design algorithms and representations that generalize better by reducing the reliance

on spurious correlations. In molecular scoring, the exploration of domain generaliza-

tion and domain adaptation algorithms falls into this category and will be discussed

in Section 3.3.

Finally, as it is important that we can efficiently balance between exploration and ex-

ploitation and well-calibrated uncertainty estimates are thus essential, related work on

uncertainty estimation will be discussed in Section 3.4.

3.1 Model Analysis: Applicability Domain

The concept of the Applicability Domain (AD) was first introduced in the early 2000s as

one of multiple guidelines to follow when replacing in-vitro and in-vivo experiments by

11



3. RELATED WORK

in-silico alternatives (49, 50), specifically QSAR models. While the AD concept stems

from cheminformatics, it bears many similarities to the idea of OOD detection in ML (51).

Intuitively, the AD identifies a part of the chemical space on which the model is expected

to perform well. Practically, the AD of a model is defined with respect to the data it was

trained on.

Central to various AD definitions is a notion of similarity between the training data

and any other molecule (52). Similarity can be defined with respect to various molecular

characteristics, such as the molecular structure, its physico-chemical properties or a task-

specific activity. Approaches differ in which characteristics they use and the criteria they

employ to compare them (53, 54, 55). Criteria can for example be distance-based, range-

based or probability-based. At test time, the established criteria can be used to determine

whether a molecule falls within the model’s applicability domain and thus whether the

model’s prediction can be trusted.

Prior work reduces a measure of similarity down to a binary decision, i.e. whether a

molecule falls in or outside of the AD (or, similarly, whether a molecule is in- or out-

of-distribution). Different from prior work, we argue that this distinction is somewhat

arbitrary and rather aim to study how a model’s performance evolves as the similarity to

the training data changes.

3.2 Model Selection: Data Split

In ML, it is common practice to select one out of many models for further usage. A

typical example of this is hyper-parameter tuning. To do so effectively, this requires a

selection criterion that is informed by how we expect to use the model in practice. In drug

discovery, the popular usage of different data-splits other than the default, random split

can be thought of as a form of OOD generalization through model selection (56). The

underlying assumption is that these splitting methods better replicate the distribution

shifts encountered in live drug discovery programs. Scoring and selecting models based

on these splits is expected to not only give a more accurate indication of prospective

performance, but is also expected to lead to models that generalize better.

Several data splits have been proposed, some of which we will discuss next. Different

from prior work, we argue that there is no single best split, but rather describe a protocol to

12



3.2 Model Selection: Data Split

choose a split given a dataset and molecular representation. We do so by characterizing the

distribution shifts encountered in live drug discovery programs and by evaluating different

splits based on their ability to replicate this shift.

3.2.1 Temporal split

To increase representativeness, an obvious option would be to use a temporal split (57, 58).

In this split, each data point is associated with a timestamp that encodes the moment at

which it was collected during a real drug discovery program. The test set is then comprised

of the molecules that were collected the latest. Due to directly leveraging the temporal

information in a representative drug discovery program, this provides a good estimate

of the distribution shifts encountered in practice and a good indication of the model’s

prospective performance (59). In practice, however, this temporal data is generally not

(publicly) available and approximate splitting methods are needed.

3.2.2 Scaffold-based split

A scaffold is a concept that intuitively refers to the structural core of a molecule. There is

no universal definition that formalizes this intuition (see Figure 3.1), but in ML research

the Bemis-Murcko (BM) scaffold (60) is the prevalent option. In ML for drug discovery,

the scaffold-based split has replaced the random split as the standard splitting method in

many popular benchmarks (34, 61, 62). With this split, the data is stratified by scaffold

after which the different strata are randomly split in a train and test set. This provides a

better approximation of the temporal split and is thus more representative of prospective

performance (58).

3.2.3 Extrapolation-oriented split

In parallel to ML practitioners, computational chemists have also proposed various splitting

methods for the evaluation of QSAR models (52). One such method was the extrapolation-

oriented split (64). This work proposes an algorithm to select molecules that are on the

perimeter of the dataset. It does so by repeatedly finding the two molecules that are fur-

thest away from one another (according to the Euclidean distance of their representation)

and adding these to the test set. When compared to other splits, using the extrapolation-

oriented split for model selection is found to lead to models that extrapolate (or generalize)

better (64).
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Figure 3.1: Molecular scaffolds - Visualization of different definitions of molecular scaf-
folds, taken from Hu et al. (63).

3.3 Model Design: Domain Generalization and Adaptation

The i.i.d. assumption is central to machine learning, but unrealistic for many practical

applications. In the i.i.d. setting, models are prone to rely on statistically significant

but spurious correlations (or shortcuts) between the input features and the labels (13).

This makes them susceptible to biases in the dataset and hinders OOD generalization,

especially in the low-data setting, resulting in disappointing performance in practice (61).

Several learning paradigms exist that relax the i.i.d. assumption when testing a model’s

generalization performance (e.g. meta-learning, transfer learning, and domain adaptation).

These paradigms differ to the extent in which they put constraints on the similarity and

availability of the train and test data (14, 65).

Although many of these paradigms can be applied to molecular scoring, we focus on

domain generalization (66, 67) (DG) and domain adaptation (15) (DA). In DG and DA,

a model is trained on several related, but distinct data distributions called domains. In

practice we rely on human bias to define the domains (e.g. the scaffold of a molecule)

because it’s difficult to do so formally. After training, the generalization performance of

the model is evaluated, without any further fine-tuning, on an set of differently distributed

test domains. The main difference between DA and DG, is that in DG the test domains

are unknown during training. Specifically, we focus on unsupervised DA, in which the

test domains are known, but can only be used as an unsupervised signal during training.
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In both the DG and DA paradigm, a model that relies on domain-specific biases will be

penalized.

Generally, the goal in DG and DA is to learn domain-invariant representations of the

input which are expected to generalize better. This can be related to causal inference (68)

by describing the data labeling process as a structural causal model (SCM) (69). Pearl’s

seminal work on causality (70) tells us that solely observational data cannot convey causal

relations, but in domain generalization each domain can be considered a constrained inter-

vention of the original SCM. As the causal relations are invariant across domains, we can

consequently hope to learn them from the interventional distribution by learning a domain

invariant representation. In molecular scoring, this would hopefully result in learning the

structural or quantum-mechanical properties and dynamics that cause a molecule’s activ-

ity.

There exists prior work that benchmarks DA and DG methods for molecular scoring (34,

61, 62). These benchmarks maintain various definitions of a molecule’s domain (e.g. the

number of atoms, the scaffold or the year a molecule was patented) and benchmark how

effective different methods are for generalizing across domains. In line with conclusions in

different disciplines (56), there is a significant drop in performance with a domain-based

split compared to a random split. Also in line with earlier conclusions, most DA and

DG methods tend to do on par or worse than the default empirical risk minimization

(ERM) (71). Different from prior work, we benchmark DA and DG methods on a test set

that replicates the covariate shifts encountered in ongoing drug discovery programs.

3.4 Uncertainty Estimation

Uncertainty estimation aims to quantify a model’s confidence by replacing point-wise pre-

dictions by distributional ones. Well-calibrated uncertainty is essential in interactive set-

tings where a model’s predictions inform the next actions, such as in active learning and

Bayesian optimization. In these types of settings, it is important to know what a model

does not know to effectively balance between exploration and exploitation. In drug discov-

ery, for example, the first few rounds are generally used to improve the model’s performance

on new chemistry where the uncertainty is high (i.e. explore) before starting to optimize

the activity of interest (i.e. exploit) (72). The worst kind of error in such settings is a

confidently wrong model.
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A common distinction in uncertainty estimation is between aleatoric and epistemic un-

certainty (73). Aleatoric uncertainty is caused by inherently random aspects of the data

generation process (e.g. the noise in bioassay readouts). This uncertainty can not be re-

duced by improving the model. Epistemic uncertainty on the other hand is caused by a

lack of knowledge by the model. With few exceptions (74), most methods use the variance

of the predictions by multiple, similar models as a proxy to directly estimate the epistemic

uncertainty.

A naive approach to obtain multiple predictions of similar models is to actually train

multiple models from scratch (75). While this is an effective approach in practice, the

required compute might not be available when models or datasets become sufficiently

large, specifically in deep learning. To circumvent this issue, various methods have been

proposed that reduce the computational needs (e.g. methods based on dropout (76) or

by using an ensemble of model checkpoints (77)). Outside of deep learning, there is the

Random Forest (78) and Gaussian Process (79), which take a more principled approach to

uncertainty estimation.

Due to the importance of well-calibrated uncertainty estimates in molecular scoring,

we argue that any work investigating the OOD performance of different ML methods

should include the uncertainty estimates in its evaluation. Specifically because prior work

suggests that the accuracy of a model’s uncertainty estimates decrease under distribution

shifts (80, 81), we evaluate a model’s OOD generalization along two axes: the accuracy of its

predictions (or performance) and the accuracy of its uncertainty estimates (or calibration).
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4

Molecular Out-Of-Distribution
(MOOD)

This work proposes the Molecular Out-Of-Distribution (MOOD) framework. MOOD con-

sists of two parts:

1. A complete problem specification of OOD generalization for molecular scoring.

The goal of this specification is to align different stakeholders on the details of the

problem that we are trying to solve and to scope what a solution would look like.

Specifically, we hope that this can close the gap between advances in academia and

industry pain points. Section 4.1 will describe what distribution shifts we encounter

in ongoing drug discovery programs, how these shifts affect generalization and how

we can best best replicate such shifts for model evaluation.

2. An investigation of the effect and importance of different tools to improve OOD gen-

eralization in molecular scoring. The goal of this investigation is to get an overview of

how various techniques affect generalization through the lens of the newly proposed

problem specification. Specifically, we hope that this can inform future study direc-

tions and that this can more efficiently direct resources in ongoing drug discovery

programs. Section 4.2 will detail what tools we consider in this study and how they

compare to one another.

Finally, to promote reproducibility, Section 4.3 will detail the experimental setup.
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4.1 The MOOD specification

The goal of the MOOD specification is to make explicit what problem we are trying to

solve when we are talking about OOD generalization in molecular scoring. Specifically, the

goal is to come to a set of evaluation standards that closely align with the situations en-

countered in ongoing drug discovery programs and that can be followed by the community

to guide future advances in molecular scoring. The first evaluation standard has already

been established in Section 3.4 and dictates that molecular scoring techniques should be

evaluated based on both their performance and their calibration. This section introduces

the second (and final) standard: A novel protocol to obtain a test set that is similarly diffi-

culty to the OOD molecules encountered in downstream applications of molecular scoring.

Before we get there though, we first need to define what it means to be OOD in molecular

scoring.

4.1.1 Where to generalize to?

Drug discovery is a vast domain and even within just molecular scoring, there exist many

forms of OOD generalization that are interesting to pursue. One could for example aim to

generalize from small molecules to macro-molecules or across different, but related bioas-

says. In this work, the focus is on generalizing across the molecular representation space

as this is a common use case for molecular scoring in ongoing drug discovery programs.

We argue that in this setting the type of distribution shift we encounter is the covariate

shift. Let S = {(xi,yi)}ni=1 with (xi,yi) ∼ PrS(X)×PrS(Y ) be a training set of molecule-

activity pairs. We denote PrS(X) as the train distribution over the input space of molecules

and PrS(Y ) as the train distribution over the output space of activity values. Assuming

that we have a learned predictor of the activity given the molecules: f : X → Y , we

want the predictor to generalize to T = {(xi,yi)}mi=1 with (xi,yi) ∼ PrT (X) × PrT (Y )

and PrT (X) ̸= PrS(X). We further assume that PrS(Y ) = PrT (Y ) and PrS(Y |X) =

PrT (Y |X). To verify whether this is a realistic scenario in practice, we consider the two

popular applications of molecular scoring and consider how these affect Pr(X), Pr(Y ) and

Pr(Y |X):

• In both virtual screening and optimization, we assume there to be a shift in the

input space distribution Pr(X). Due to the sheer size of the molecular space and

the human bias in exploring it so far, we can expect to regularly encounter molecules
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that do not resemble the molecules in the train set. This will be discussed in more

detail in Section 4.1.4.

• In both virtual screening and optimization, we assume that the underlying conditional

distribution Pr(Y |X) (i.e. the data generation process) remains the same since we

train the model to serve as a proxy of that data generation process.

• That there is no shift in target space distribution Pr(Y ) is less obvious.

– In virtual screening, it is a common assumption that there is no such shift.

Since we do not select which molecules to apply our model to but rather rely

on quantity to discover new hits, we can think of this as randomly sampling the

molecular space and can assume the target distribution to remain the same.

– In de-novo generation, one might expect a shift since the model is used to

bias a generative process to produce molecules that have an optimized activity.

However, since the optimization process is iterative and we retrain a model after

experimentally testing a batch of generated molecules, this shift is minimized.

Additionally, the shift is in the prediction space of the model and not in the

actual target space. To account for such a shift in the prediction space, we

can use task-dependent metrics that focus on the performance of the model in

the direction (i.e. minimize or maximize) or class that matters most during

optimization.

Now that we have established the kind of generalization that is of interest in this study,

we will next define what it means for a molecule to be OOD in this setting.

4.1.2 A continuous, distance-based OOD definition

Whether a data point is in- or out-of-distribution is often framed as a binary decision

(e.g. OOD detection in ML and the AD of QSAR models). We argue that such a sharp

distinction is arbitrary and propose to use a continuous, distance-based definition instead.

Intuitively, the further a query molecule is from the train set, the higher the expected

error of the model (i.e. the "more OOD" that molecule is). If needed, one can still easily

go from the continuous to the binary setting by thresholding the distance. By assuming

a continuous definition, however, it becomes easier to characterize the types of covariate

shifts encountered in ongoing drug discovery programs (see Section 4.1.4).
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This raises the question what distance metric to use. While this is an interesting research

question on its own, we adopt the k-NN distance metric between a query molecule and

the train set as proposed in prior work (81). While it is likely better to pick a dataset-

dependent k, we fix k = 5 since early experiments showed that the derived conclusions were

stable under multiple values of k. The pairwise distance between two molecules is com-

puted between their representations and the associated distance metric is representation

dependent: For binary representations we use the Tanimoto distance and for continuous

representations we use the Euclidean distance. An important outcome of this is that the

distance between two molecules depends on the representation used during

training. It is worth noting that this departs from prior work, especially on the AD, in

which an OOD metric is defined independently of the molecular representation. While

using a representation-independent distance metric makes sense from a human perspec-

tive, an ML model does not have the same context and only knows about the information

contained in the molecular representation. From the model’s perspective, the distance

between two molecules should therefore be solely defined in terms of their representation.

To validate the suitability of the assumed, representation-dependent k-NN distance as

an OOD metric, we will next examine how performance and calibration are affected as the

distance to the train set grows.

4.1.3 Validation of the assumed OOD definition

A good OOD metric captures our intuition that a baseline model (i.e. a model that relies

on the i.i.d. assumption) is more likely to make errors the further a query molecule is from

the train set. As a way to validate the assumed, distance-based OOD metric, we thus run

a hyper-parameter search for three baseline algorithms on various datasets (see Figure 4.1)

and using various representations (see Table 4.1) and evaluate how performance is affected

as the distance to the train set grows. As baselines we use the Random Forest (RF) (78),

Gaussian Process (GP) (79) and an ensemble (75) of Multi-Layer Perceptrons (MLP) (82).

Besides the performance, we also evaluate how calibration is affected as the distance to the

train set grows. To support the usage of set-based performance and calibration metrics

(see Table 4.2), we bin the model’s predictions based on their distance to the train set and

compute the performance and calibration per bin. For the full experimental details, see

Section 4.3.1. For the resulting figures, see Figure 4.2, Figure 4.3 and Figure 4.4.
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Figure 4.1: Dataset overview - An overview of the 11 ADMET datasets used in this
study. All datasets were selected from TDC to be diverse in terms of their size, task and
characteristics. There is 4 absorption, 2 distribution, 1 metabolism, 2 excretion and 2 toxicity
datasets. While not having target-specific datasets, the chosen datasets do include 2 datasets
that measure protein inhibition. For a detailed description of each dataset, we refer to the
TDC documentation (34).

Name Learned Description

MACCS (36) No Binary vector describing the absence or presence of
expert-informed structural patterns.

ECFP6 (35) No Binary vector describing the absence or presence of
structural patterns with radius 3.

Desc2D (83) No Continuous vector of 2D physico-chemical properties
from RDKit, such as the molecular weight, the num-
ber of valence electrons and the LogP value.

WHIM (84) No Continuous vector describing the 3D shape.
Graphormer (45) Yes Embedding from a Transformer pre-trained to predict

the HOMO-LUMO gap from the 2D graph.
ChemBERTa (11) Yes Embedding from a Transformer pre-trained with the

BERT objective (85) on SMILES strings

Table 4.1: Molecular representation overview - An overview of the different molecular
representations used in this study. All representations were chosen based on their popularity
in the scientific literature and their public availability. There is 4 engineered representations
and 2 representations obtained from pre-trained Transformer NNs (86).
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Figure 4.2: Performance and calibration over distance for MLP ensembles - In this
grid, each column represents a molecular representation and each row represents a dataset.
The datasets are ordered by their size from small (at the top) to large (at the bottom). All
y-axes are visualized in such a way that higher is better. For the MLP ensemble, we find
ρ = −0.516 for the performance and ρ = −0.011 for the calibration. This figure is best viewed
digitally.
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Figure 4.3: Performance and calibration over distance for RFs - In this grid, each
column represents a molecular representation and each row represents a dataset. The datasets
are ordered by their size from small (at the top) to large (at the bottom). All y-axes are
visualized in such a way that higher is better. For the RF, we find ρ = −0.467 for the
performance and ρ = 0.069 for the calibration. This figure is best viewed digitally.
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Figure 4.4: Performance and calibration over distance for GPs - In this grid, each
column represents a molecular representation and each row represents a dataset. The datasets
are ordered by their size from small (at the top) to large (at the bottom). All y-axes are
visualized in such a way that higher is better. For the GP, we find ρ = −0.475 for the
performance and ρ = −0.096 for the calibration. This figure is best viewed digitally.

24



4.1 The MOOD specification

Dataset Performance metric Calibration metric

DILI AUROC ECE
HIA AUROC ECE
hERG AUROC ECE
HalfLife Spearman Spearman
Caco2 MAE Spearman
Clearance Spearman Spearman
Pgp AUROC ECE
BBB AUROC ECE
PPBR MAE Spearman
Lipophilicity MAE Spearmna
CYPP4502C9 AUPRC ECE

Table 4.2: Overview of calibration and performance metrics per dataset - Metrics
used to measure performance and calibration. For the performance metrics, we follow the
metrics prescribed by the associated TDC benchmark (34). For the calibration metrics, we
use the Expected Calibration Error (ECE) (80, 87) for all classification datasets and we use
the Spearman correlation between the uncertainty and MAE for all regression datasets.

Visually inspecting these figures, we observe a tendency for performance to drop over

distance, whereas calibration seemingly remains more stable. Quantifying this trend using

the mean Spearman correlation coefficient across (model, dataset, representation) triplets,

we find ρ = −0.486 between the distance and performance and ρ = −0.013 between the

distance and calibration1. This provides quantitative evidence that performance indeed

drops over distance, while calibration is mostly unaffected, which matches our expectations

of a good OOD metric.

By computing the correlation measures separately for each of the datasets (see Table 4.3)

and each of the representations (see Table 4.4), we observe that this trend is consistent

across the board. For the performance, it now also becomes clear that the strength of

the trend seems to largely depend on the performance metric. One interesting difference

between the metrics is that MAE, with the strongest correlation, is computed per-sample

while AUROC, AUPRC and Spearman are computed for a set of samples. This suggests

that at least some of the differences could be explained as a side-effect of the binning

1The Spearman correlation is computed using SciPy (88). The documentation of the p-value notes
"The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so."
Since we use a smaller number of bins and thus do not surpass that threshold, the p-values are not reported.
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Dataset Performance ρ Calibration ρ

DILI -0.722 -0.029
HIA -0.216 0.241
hERG -0.251 -0.103
HalfLife -0.264 -0.056
Caco2 -0.671 0.043
Clearance -0.294 -0.046
Pgp -0.473 0.309
BBB -0.482 0.081
PPBR -0.766 -0.254
Lipophilicity -0.810 -0.236
CYPP4502C9 -0.400 -0.090

Table 4.3: Performance and calibration over distance per dataset - The Spearman
correlation between the distance and binned performance or calibration, aggregated by dataset.
The datasets are sorted by size from smallest (top) to largest (bottom).

Representation Performance ρ Calibration ρ

MACCS -0.658 0.125
ECFP6 -0.505 -0.003
Desc2D -0.530 -0.082
WHIM -0.206 -0.233
Graphormer -0.323 0.116
ChemBERTa -0.696 0.001

Table 4.4: Performance and calibration over distance per representation - The
Spearman correlation between the distance and binned performance or calibration, aggregated
by representation.
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Representation Correlation ↓ Slope ↑ Intercept ↑

ChemBERTa -0.970 -0.534 -0.155
Desc2D -0.915 -0.477 -0.186
ECFP6 -0.955 -0.579 -0.058
Graphormer -0.906 -0.553 -0.462
MACCS -0.934 -0.512 -0.364
WHIM -0.139 -0.062 -0.658

Table 4.5: Slope and intercept on Lipophilicity - The resulting slopes and intercepts
of fitting a linear function to the performance and distance of different representations on the
Lipophilicity dataset. The slopes are adjusted for the differences in range of the respective
distance functions. To be consistent with earlier figures, we use the negated MAE to measure
performance in Lipophilicity.

procedure we employ to compute set-based metrics (e.g. because the number of samples

differs from bin to bin). For the the calibration, we have unfortunately not been able to

find an explanation for the differences in correlation between different datasets or different

representations.

Finally, it is worth noting that by using the Spearman correlation, we only look at the

correlation between the rank of the distance and the rank of the performance or calibration.

This is done on purpose, as we just want to validate our intuition that performance and

calibration drop over distance, but do not want to assume a specific function. This does,

however, hide some useful information. It could for example be that two representations

with a similar correlation differ in the speed by which the performance decreases. For

example, if we assume a linear function and just look at the Lipophilicity dataset, we can

compute the intercept and slope for different representations (see Table 4.5). By doing

this, we can for example see that while ECFP6 and MACCS have a similar correlation and

slope, the intercept of ECFP6 is a lot higher, which tells us that ECFP6 performs better

for this dataset. Similarly, while WHIM does poorly at low distances (i.e. the intercept is

low), the drop in performance is minimal when the distance grows (i.e. the slope is close

to 0). At higher distances, WHIM could thus be the better option. This shows that a

validated OOD metric can serve as an insightful tool for model selection.

While for the assumed k-NN distance the general tendency is as expected, an interesting

research question could be to find a distance metric that better correlates with the difficulty
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of generalizing. Additionally, there are some interesting patterns that could be worth

investigating further. For example, in many of these plots, performance goes up again

after having dropped. Another interesting observation is that at high distances models can

do worse than random (e.g. the AUROC score drops below 0.5 or the Spearman correlation

drops below 0), suggesting that the model suffers from having learned spurious correlations.

For MOOD, however, we consider there to be enough evidence that the chosen distance

metric is a reasonable choice and leave the exploration of other distance metrics and related

research questions to future work.

Now that we have found a distance metric that can serve as a continuous OOD metric,

we can use it to characterize the covariate shift from any training dataset to any set of

(unlabeled) molecules in any representation space. This will lead us to present our first,

major result in the next section: A protocol for replicating the covariate shifts in molecular

scoring as encountered in ongoing drug discovery programs.

4.1.4 A protocol for replicating realistic shifts

In line with popular ML practice, MOOD distinguishes between two different data splits

that both serve a different purpose. The train-test split splits the initial dataset in a train

set and test set (or holdout set). The test set is not at all used during model training

and its purpose is to finally provide an accurate indication of prospective performance in

downstream applications. The resulting training set is once more split using the train-val

split (this will be discussed further in Section 4.2.1). This results in the final training set,

which is used to optimize the model’s parameters, and a validation set, which is used for

model selection and early stopping.

To get an accurate estimate of the downstream performance of a model, we thus want

the hold-out test set to be similarly difficult to the molecules encountered in downstream

tasks. Using our continuous, distance-based OOD definition, we can now characterize,

compare and thus replicate covariate shifts. It is important to note that while we will be

discussing a particular example, the protocol we describe is more generally appli-

cable to replicate the expected covariate shift for molecular scoring in any drug

discovery program.
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Step 1: Compile a set of molecules representative of the downstream task

The first step is to compile a list of (unsupervised) molecules that you want to use your

model on. Consider both popular use cases of molecular scoring models:

• Virtual screening: In virtual screening, a molecular scoring model is used to screen

a chemical library of readily available compounds. Since such a library is known

beforehand, we can simply collect all molecules we will be applying our model to. In

this study, we randomly sample 50.000 molecules from Molport.

• De-novo generation: In de-novo generation, we apply a molecular scoring model

to the molecules sampled from a generative process. This generative process can be

subject to multiple constraints and changes during training due to the optimization

procedure, making it difficult to know beforehand what molecules it will generate

exactly. However, by training the generative model with a subset of the constraints

that do not involve the molecular scoring model or with general drug-like constraints,

we can get a reasonable estimate. In this study, we sample 50.000 molecules from

REINVENT (33), trained to match the ChEMBL distribution (89).

Step 2: Compute the distance from each of the representatives to the train set

For each of the molecules collected in Step 1 and each of the molecular representations we

are interested in trying, we compute the distance to the train dataset.

Step 3: Characterize various data splits

For each of the train-test splits that we are considering, use it to split the dataset in a

train and test set. For each representation, compute the distance from the test samples

to the train set. If the split is stochastic, this can be repeated for multiple seeds to get a

more reliable estimate.

Step 4: Rank the different splits based on their representativeness

Using the two distance distributions computed in Step 2 and Step 3, we can rank each

of the considered splitting methods by computing the Wasserstein distance between these

two distributions. The splitting method that has the lowest mean Wasserstein distance to

the distributions of downstream representatives should be used as the train-test split.
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To demonstrate the above protocol, we use it to evaluate the representativeness of four

different splitting methods. Besides the widely adopted random split and Bemis-Murcko

scaffold split (58), we also investigate the usage of the extrapolation oriented split (64)

(which we hereafter refer to as the "perimeter" split) and propose the maximum dissim-

ilarity split. For both the perimeter split and the maximum dissimilarity split, we group

the data points according to the k-means clustering of their representations (k = 25),

where the representative of each group is the cluster center. To ensure we can use k-means

with each representation, we first compute a continuous representation using an Empirical

Kernel Map with 512 randomly sampled points. For the perimeter split, we add the two

groups that are furthest away from one another to the test set (according to the Euclidean

distance of their representatives) until the desired test size is reached. For the maximum

dissimilarity split, we find the two groups that are furthest away from one another and

add one to the train set and the other to the test set. We then repeatedly add the group

that is closest to the original test group to the test set until the desired test size is reached.

Compared to the random and scaffold split, the maximum dissimilarity and perimeter split

increase the distance between train and test.

We visualize the ranking results of the protocol in Figure 4.5. Additionally, we summa-

rize the prescribed splits in Figure 4.6. Interestingly, the proportion of prescribed splits

differs significantly from representation to representation and what is prescribed often does

not match common practice. For example, while the random split is believed to be an un-

suited choice, we show that for the Desc2D and WHIM representations this is actually the

most representative splitting method. While this may seem unintuitive at first (e.g. due to

the sheer size of the molecular space and the biased exploration of it so far), it makes more

sense when considering that the range of these representations (i.e. the variety of 3D shapes

and bio-physical properties of small molecules) is rather limited compared to a molecule’s

structural features. For many of the other representations, however, the currently pop-

ular splits are actually not difficult enough and the perimeter or maximum dissimilarity

split is a better choice. This suggests that evaluation standards in academia do

not align with the situations encountered in ongoing drug discovery programs.

Consequently, this could result in a gap between advances in academia and industry pain

points.

This raises the question of how big this gap is. We can answer this question by comparing

the performance and calibration of models evaluated with a scaffold split and models
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Figure 4.5: Visualization of the split prescription protocol - To get a realistic estimate
of downstream performance, we can characterize, compare and replicate the covariate shifts
encountered in ongoing drug discovery programs. In this grid, each column represents a
molecular representation and each row represents a dataset. The datasets are ordered by their
size from small (at the top) to large (at the bottom). This figure is best viewed digitally.
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Figure 4.6: Proprotion of prescribed splits following from the proposed protocol -
For each of the encoders, this plot shows the proportion of splits that are most representative
of downstream molecules according to the protocol proposed in Section 4.1.4.

evaluated with the prescribed split. However, as we do not yet have all the data needed,

we will revisit this question in Section 4.2.3.

This concludes the MOOD specification. In summary, the MOOD specification consists

of two evaluation standards that ensure the model is evaluated in a way that closely

matches how the model will be used in downstream applications. First of all, models

in molecular scoring should always be evaluated in terms of both their performance and

their calibration. Secondly, the train-test split should be chosen by following the described

protocol to replicate a realistic covariate shift. We hope that the MOOD specification

can guide future advances and reduce the gap between advances in academia and industry

painpoints.

4.2 The MOOD investigation

Now that we have a complete specification of the OOD problem as it is encountered in

ongoing drug discovery programs, we use the resulting evaluation standards to investigate

the effect and importance of different tools to improve generalization through this new lens.

To this end, we first need to establish which tools can be used to improve generalization.
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4.2.1 Tools to improve generalization

Figure 4.7: A visual overview of tools to improve generalization - Across domains,
we found that these 5 tools are frequently used to improve the generalization of ML models.
While data augmentation is an effective and popular tool in other domains, data augmentation
techniques in molecular scoring are not yet well established.

Assuming that we start with a fixed dataset, we consider there to be a total of five

tools ML practitioners can employ to improve generalization. We split these tools in three

categories (see also Figure 4.7):

1. Data: In other domains (e.g. computer vision) a popular and effective technique

to improve generalization is to augment a dataset by a set of transformations that

respect the symmetries of the problem (e.g. by rotating an image, you do not alter

the class of the object in that image). In molecular scoring, to the best of our

knowledge, there is no such set of commonly accepted transformations. While we

think this to be a promising path moving forward, we therefore do not consider data

augmentation in this study.

2. Model design:

• Algorithm: Some algorithms have inductive biases that are better suited for

generalization, as discussed in Section 3.3.

• Representation: Different representations carry different information and are

differently suited for generalization, as discussed in Section 2.3.
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Criterion Description

Default The mean validation performance.
Domain Weighted The mean weighted validation performance, where the weight of

each sample is one over the domain frequency of the domain it
is part of.

Distance Weighted The mean weighted validation performance, where the weight of
each sample is its distance to the train set.

Calibration The mean validation calibration
Calibration x Metric The mean validation calibration ∈ [0, 1] times the mean valida-

tion performance.

Table 4.6: An overview of the different model selection criteria - A criterion dictates
how to compare different models. We ran experiments for all five criteria listed in this table,
but due to a bug in the code the results for Calibration and Calibration x Metric were unusable
and have been filtered out.

3. Model selection:

• Train-val split, how to split of a subset of the data on which the model will

be evaluated for model selection, as discussed in Section 3.2 and Section 4.1.4.

While for the train-test split representativeness was the most important, for

the train-val split this is less established. One could e.g. also expect a random

train-val split to work best as a model then sees more diverse chemistry during

training.

• Criterion: To select one model out of many, we need a criterion that dictates

which model is best. To the best of our knowledge, there is no prior work on this

and common practice is to simply select based on the metric you’re optimizing

for, but we suspect that this can be an effective tool to improve generalization,

especially when optimizing for both calibration and performance simultaneously.

For the options considered in this study, see Table 4.6.

Now that we established which tools ML practicioners can use to improve generalization,

we next investigate how these different tools compare to one another.

4.2.2 The effect and importance of different tools

The goal of the MOOD investigation is to inform future research directions and to more

efficiently direct resources in ongoing drug discovery programs. To this end, we are in-

terested in both the effect and the importance of each tool. The effect indicates how
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4.2 The MOOD investigation

Category Tool Options

Model design Algorithm Baseline: RF, GP, MLP
DG: MTL, VREx, IB-ERM
DA: CORAL, DANN, Mixup

Model design Representation Structural: MACCS, ECFP6, WHIM
Biochemical: RDKit 2D
Pre-trained: Graphormer, ChemBERTa

Model selection Train-val split Baseline: Random, BMS scaffold
Generalization: Perimeter, Max Dissimilarity

Model selection Criterion Performance: Default, Domain-Weighted,
Distance-Weighted

Calibration: Calibration
Mixed: Calibration x Metric

- - Initial seed: ∈ [0, 1024)

Table 4.7: An overview of the different options evaluated in the MOOD RCT -
For each RCT trial, we randomly sample an option for each of the trials. Due to a bug in the
code, the results for two of the criteria were unusable and have been filtered out.

different options of a tool differ in terms of their performance and calibration (e.g. how

does a domain adaptation algorithm compare to a baseline algorithm). The importance

then describes the variance of the effect to indicate how impactful that tool is on the final

performance and calibration relative to the other tools (e.g. how impactful is a change in

algorithm compared to a change in representation).

To have some universality to our conclusions, we want to test at least a few number of

different options for each of the considered tools. However, even with just a few options

for each, testing all possible combinations quickly becomes infeasible due to the curse of

dimensionality. To not introduce any spurious correlations, we conduct a Randomized

Control Trial (RCT) for each of the datasets (for the full experimental details, see Sec-

tion 4.3.2). In the RCT, we randomly sample an option for each of the tools (see Table 4.7),

run a hyper-parameter search and record the final test performance and calibration. Be-

sides three baseline algorithms, we also include three DA (CORAL (90), DANN (91) and

Mixup (92)) and three DG algorithms (MTL (93), VREx (94) and IB-ERM (95)). In line

with the MOOD specification, we split the initial dataset in a train and test set using

the splitting method that is prescribed by the protocol. In total, we ran a 100 trials per

dataset and trained over 110.000 models throughout this RCT. The final distribution of
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Figure 4.8: Distribution of test performance scores per dataset - The distribution of
final test peformance scores (i.e. MAE, Spearman, AUROC or AUPRC), achieved throughout
the different RCT trials. Aggregated per dataset. The datasets are ordered from small (at
the top) to large (at the bottom)

Figure 4.9: Distribution of test calibration scores per dataset - The distribution of
final test calibration scores (i.e. ECE or Spearman), achieved throughout the different RCT
trials. Aggregated per dataset. The datasets are ordered from small (at the top) to large (at
the bottom)
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4.2 The MOOD investigation

performance and calibration scores on the test set is visualized in Figure 4.8 and Fig-

ure 4.9. While not frequent, an interesting observation is that the best model from the

hyper-parameter search can still do worse than random (e.g. the Spearman correlation is

lower than 0 or the AUROC score is lower than 0.5), suggesting that the model suffers

from having learned spurious correlations that do well for the validation set, but not for

the test set. Per dataset, per tool and between each ordered pair of that tool’s options,

we compute the mean, signed difference in performance and in calibration between the

two options. The resulting distributions of differences are visualized in Figure 4.10 and

Figure 4.11. As expected, these distributions are symmetric around zero.

Finally, to visualize the effect and importance of each of the tools, we introduce the im-

provement ratio. The improvement ratio is computed separately per dataset and is defined

as the signed difference divided by the maximum difference for that dataset. Using the

improvement ratio instead of just the (absolute, relative or plain) difference is simply a

means to compare options and tools across datasets, despite the different metrics used to

measure performance and calibration1. The effect is then computed as the mean impor-

tance ratio of an option and the importance of a tool is computed as the variance of its

options’ effects. To make the importance easier to interpret, we divide it by the variance of

an equal number of options of randomly grouped seeds. An importance of 1 thus implies

that the seed is of equal importance as the tool of interest. The effects for the test perfor-

mance are visualized in Figure 4.12 and the effects for the test calibration are visualized

in Figure 4.13. Finally, the importance of the different tools is given in Table 4.8.

Performance

When it comes to the performance, an interesting observation is that the only tool of

significant importance is the molecular representation. All other tools have an importance

score lower than 1.0 and are thus less influential than the seed. That the model selection

tools are less important than the model design tools is expected. After all, in model

selection we can only select the best performing model, but not improve the performance

of the models we are choosing from. However, when visualizing the difference between

the best test score found throughout the hyper-parameter search and the test score of the
1While using the relative difference or change might seem more logical, some of the metrics have

negative values. Since there is no commonly accepted way to compute the relative difference in this
scenario, we opted to use the improvement ratio instead.
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Figure 4.10: Distribution of differences in test performance - The distribution of
mean, signed differences in performance between a tool’s different options, aggregated per
dataset. The datasets are ordered from small (at the top) to large (at the bottom)

Figure 4.11: Distribution of differences in test calibration - The distribution of mean,
signed differences in calibration between a tool’s different options, aggregated per dataset.
The datasets are ordered from small (at the top) to large (at the bottom)
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4.2 The MOOD investigation

Figure 4.12: Comparing different tools on their test performance - The effect and
importance of different tools to improve a model’s test performance.

Figure 4.13: Comparing different tools on their test calibration - The effect and
importance of different tools to improve a model’s test calibration.
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Tool Performance importance Calibration performance

Algorithm 0.983 2.000
Molecular representation 4.691 1.856
Train-val split 0.765 1.099
Criterion 0.806 1.154

Table 4.8: Importance of different tools to improve generalization - The importance
captures the difference in performance between a tool’s different options. The larger this
difference, the more influential and thus important the tool. For interpretability, these scores
are divided by the score of the seed. A score higher than 1 thus indicates that the tool is more
influential than changing the seed.

model that was selected based on the criterion (see Figure 4.14), we observe that there

often still is quite a large gap. This suggests that model selection tools could be

explored further as an effective tool to improve generalization.

Figure 4.14: Difference between the test score of the best and selected model -
Absolute differences between the maximum test score and the test score of the model that was
selected during the hyper-parameter search. The datasets are ordered by size, from small on
the left to large on the right.

Perhaps more surprising, is that the algorithm is also of negligible importance. While the

best algorithm is from DA (CORAL), the baseline algorithms remain competitive to DA

and DG algorithms. This is in line with conclusions from similar benchmarks (34, 56, 62).

RF, a vanilla ML algorithm, outperforms most other methods without using unlabeled

data from the test set and while being more efficient to train and easy to interpret.
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Finally, considering the molecular representation, it is interesting to observe that the

Desc2D representation does so well. A possible explanation could be that this is due to

the prescribed test split. The Desc2D split is consistently prescribed the random split (see

Figure 4.6) and since this split results in a test set that is close to the train set, we can

expect performance to be higher (see Section 4.1.3). However, the WHIM representation

is also consistently prescribed the random split, but its performance is actually worse than

for all other representations. Similarly, it is surprising to see ECFP6 to do poorly as it is

a popular choice in molecular scoring. This can be explained by the fact that the related

distance metric quickly saturates (i.e. the molecules from downstream applications are far

from the training set) and that its prescribed splits are thus more difficult, making ECFP6

ill-suited for generalization. This implies that molecular representations should be

evaluated based on both the information they carry and their suitability for

generalization.

Calibration

What stands out when inspecting the results for the test calibration, is that all tools

have an importance higher than 1.0, which is in stark contrast to the results on the test

performance. Visually inspecting the spread of the effects in the figures, one would actually

expect the importance to be similar. One possible explanation could be that the seed is

a surprisingly effective tool at improving importance, whereas it has less impact on the

calibration.

Furthermore, it is interesting to observe that the GP and RF algorithm clearly outper-

form all deep-learning based methods when it comes to their calibration. Together with

the earlier conclusion on the test performance, this shows that RF remains a strong

baseline in molecular scoring, which newly proposed methods should be compared

against.

4.2.3 Gap between current standards and the MOOD framework

In Section 4.1.4, we suggested that since the prescribed splits often do not match the

commonly used scaffold split, there could be a gap between advances in academia and

industry pain points. For this to be the case, the evaluation standards proposed by the

MOOD specification should lead to different results than the currently standard evaluation
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Figure 4.15: Comparing the the scaffold split and prescribed split for different
datasets - An indication of the relative difference in performance and calibration on the test
set between the scaffold split and the prescribed split. The datasets are ordered by their size
from small on the left to large on the right.

Figure 4.16: Comparing the scaffold split and prescribed split for different rep-
resentations - An indication of the relative difference in performance and calibration on the
test set between the scaffold split and the prescribed split.
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standards. To get an estimate1 of this difference, we combine the results collected for the

baseline algorithms in Section 4.1.3 (as an indication of the performance and calibration

on a scaffold split) and the results for for the baseline algorithm in Section 4.2.2 (as

an indication of performance and calibration on the prescribed split). We visualize the

differences in Figure 4.15 per dataset and in Figure 4.16 per representation.

This shows that on average, we still over-estimate performance by using the

scaffold split. The drop in performance is larger for some of the representations than

for others. Desc2D and WHIM, which are prescribed the random split by the MOOD

specification are relatively unaffected while there is a large drop in performance for ECFP6.

This concludes the MOOD investigation. Crucially, we find that the representation is

extra important when trying to improve OOD generalization in molecular scoring as it

not only determines the information accessible to the model, but also dictates how similar

(and thus how difficult) the molecules in the downstream applications are to the train set

from the model’s perspective. Other than that, we find that besides RF, which remains a

surprisingly strong baseline, there is no clear winners.

4.3 Experimental setup

In this study, we run a total of two experiments. The baseline experiment (see Section 4.1.3)

is used to validate the OOD metric by finding how a model’s performance and calibration

evolve as the distance to the train set grows. The RCT experiment (see Section 4.2.2)

is used to find the effect and importance of different tools. This section will detail the

experimental setup of these two experiments.

4.3.1 Baseline experiment

For each baseline, representation and dataset (for the specific options, see Section 4.1.3))

and seed ∈ {0, 1, 2, 3, 4}, we perform a hyper-parameter search through Bayesian Opti-

mization using Optuna (96) and store the best model found. First, the dataset is split

1Due to excessive computational costs, we decided not to run a set of dedicated experiments for
this. This means that the experiments are not perfectly comparable. Specifically, the train set used in
the baseline experiment is considerably smaller and less diverse and in the RCT experiment we also use
different model selection criteria and train-val splits. While we - based on earlier, smaller experiments -
do not expect vastly different conclusions with a more comparable setup, these results should be taken as
an approximation.
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three times with different splitting methods to ensure that the molecules in the validation

set and two hold-out test sets cover a large range of the related distance metric. In line

with common practice, we use a scaffold split for the validation set and use the random

and maximum dissimilarity split (see Section 4.1.4) for the test sets. Except for the two

binary representations (MACCS and ECFP6), all representations are standardized using

z-normalization. The hyper-parameter search consists of 50 trials in total. In each trial,

we train the model using the train set and use early stopping on the validation set. The

selected model is the one with the best performance on the validation set, according to

the metric associated with the dataset (see Table 4.2). Using the best model found in

the hyper-parameter search, we generate predictions for all molecules in the validation set

and two test sets. We bin these predictions based on their distance and use bootstrapping

(n = 1000) to compute the mean and variance of the performance and calibration of all

predictions in the bin. To increase smoothness, we use overlapping bins and remove all

bins with less than 25 samples (leaving about 180 overlapping bins in total). To have a

consistent visualization, we negate the value of all metrics that should be minimized (i.e.

MAE and ECE) so that a higher value is always better.

4.3.2 RCT experiment

Per dataset, we randomly sample 100 combinations from all possible combinations as sum-

marized in Table 4.7. For each combination, we then run a hyper-parameter search through

Bayesian Optimization using Optuna (96). First, we split the dataset in a train and test

using the prescribed splitting method following the MOOD specification protocol and then

split the train set once more in a validation set and final train set using the splitting

method that was randomly sampled at the start. For each hyper-parameter search, we

run a total of 50 trials, each of which consists of 5 independent train-val splits. For each

split, we train an ensemble of 5 models (except for RF and GP, for which we train just

a single model) and evaluate it - in terms of performance and calibration - on both the

validation and holdout test set. The 5 validation scores of each trial are aggregated in a

single criterion score, which dictates how good the model is compared to the other models

trained in this hyper-parameter search. The test scores are aggregated in a single score by

simply taking the mean. Except for the two binary representations (MACCS and ECFP6),

all representations are standardized using z-normalization. For the DA algorithms, we use

the unlabeled data from the test set as the target domain. For the DG algorithms, we use

k-means clustering (k = 8) to define the domains.
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Conclusion

5.1 Summary

The goal of this work was to challenge the i.i.d. assumption in molecular scoring. Specifi-

cally, this meant finding a set of evaluation standards that closely aligns with the situations

encountered in ongoing drug discovery programs. Adopting such a set of evaluation stan-

dards will ensure that advances in academia better align with the pain points of industry,

turning ML in an even more powerful tool to improve the efficiency of the drug discovery

process.

To that end, we proposed the MOOD specification. By assuming a continuous, distance-

based and, crucially, representation dependent OOD metric, we could compute the distance

of any set of unlabeled molecules to any train set in any representation space. This allowed

us to characterize the covariate shifts encountered in ongoing drug discovery programs and

led us to our first, major contribution: A protocol that ranks different splitting methods

based on their ability to replicate a realistic covariate shift. The usage of that protocol to

prescribe a train-test split is joined by the standard of evaluating both the performance

and calibration of a model to complete the MOOD specification.

The MOOD investigation naturally followed from the MOOD specification and aimed

to answer the question of how different tools compare when we adhere to this new set of

evaluation standards. To have some universality to our conclusions, while remaining com-

putationally feasible and without introducing spurious correlations, we opted to conduct

a Randomized Control Trial. We found that RF outperforms almost all other methods,

in terms of both performance and calibration. Additionally, we found that choosing the
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molecular representation is extra important as it not only affects the information accessible

to the model, but also dictates how similar two molecules are from the model’s perspective.

Through the MOOD framework, we hope to have proposed a set of principled guidelines

that can help close the gap between advances in academia and industry pain-points.

5.2 Future work

During the pursuit of this thesis, there were many questions we would have liked to explore

further, but that we unfortunately did not have the resources for. The in our opinion three

most promising continuations are summarized below.

5.2.1 Expand the RCT

The most straight-forward continuation of this work is to collect more results for the

RCT. While we aimed to choose a diverse set of options to compare, there was only so

much we could include within the constraints of this thesis. For the datasets for example,

it would be interesting to include larger datasets and to include some datasets outside

of ADMET. For the algorithms, it would be interesting to include more advanced deep

learning architectures, such as Graph Neural Networks (97). For the criterion and train-

val split, we have seen (in Figure 4.14) that there is still plenty of space left to improve.

This raises the question of what makes a good criterion and validation set, which up until

now, to the best of our knowledge, is unanswered. For the molecular representation, we

have seen that it is the most impactful tool we have to improve OOD generalization. With

the successes of large-scale models in other domains (e.g. Natural Language Processing)

and increasing efforts to replicate these success within drug discovery (9, 48, 98), it would

be interesting to understand the implications of these models for OOD generalization in

molecular scoring.

5.2.2 Investigating different OOD metrics

In this work, we assumed the k-NN distance as our OOD metric. While we observed that by

using this distance the general tendency is as expected, an interesting line of work would

be to explore different distance metrics. Additionally, it would be interested to expand

the applicability of the OOD metric to more advanced representations, as for example

encountered in multi-view learning or by concatenating two other representations.
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Given a validated OOD metric, it would additionally be interesting to evaluate its usage

within model selection. As we shortly discussed in Section 4.1.3, a good OOD metric only

tells us that there is a trend. By evaluating what function best fits that trend for different

algorithms or representations, this could help us select a model that generalizes better.

5.2.3 Synergy

In the MOOD investigation, we have looked at the impact of different tools in isolation.

It seems reasonable, however, to expect certain pairs of options to do better than just

the sum of their parts. For example, a particular molecular representation might be well

suited to be used with a particular algorithm. An investigation of the synergistic (and

antagonistic) effects of different tools in OOD generalization for molecular scoring would

be an interesting research direction.

47



5. CONCLUSION

48



References

[1] Olivier J Wouters, Martin McKee, and Jeroen Luyten. Estimated re-

search and development investment needed to bring a new medicine to

market, 2009-2018. Jama, 323(9):844–853, 2020. 1

[2] Joseph A DiMasi, Henry G Grabowski, and Ronald W Hansen. Innovation

in the pharmaceutical industry: new estimates of R&D costs. Journal of

health economics, 47:20–33, 2016. 1

[3] Steven M Paul, Daniel S Mytelka, Christopher T Dunwiddie, Charles C

Persinger, Bernard H Munos, Stacy R Lindborg, and Aaron L Schacht.

How to improve R&D productivity: the pharmaceutical industry’s grand

challenge. Nature reviews Drug discovery, 9(3):203–214, 2010. 1

[4] Antonio Lavecchia. Machine-learning approaches in drug discovery: meth-

ods and applications. Drug discovery today, 20(3):318–331, 2015. 1, 6

[5] Jessica Vamathevan, Dominic Clark, Paul Czodrowski, Ian Dunham,

Edgardo Ferran, George Lee, Bin Li, Anant Madabhushi, Parantu Shah,

Michaela Spitzer, et al. Applications of machine learning in drug discov-

ery and development. Nature Reviews Drug Discovery, 18(6):463–477, 2019. 1

[6] Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, and

Thomas Blaschke. The rise of deep learning in drug discovery. Drug dis-

covery today, 23(6):1241–1250, 2018. 1, 5

[7] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael

Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates,

Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure

prediction with AlphaFold. Nature, 596(7873):583–589, 2021. 1

49



REFERENCES

[8] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Lau-

rent Sifre, Tim Green, Chongli Qin, Augustin Žídek, Alexander WR

Nelson, Alex Bridgland, et al. Improved protein structure prediction

using potentials from deep learning. Nature, 577(7792):706–710, 2020. 1

[9] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke,

Di He, Yanming Shen, and Tie-Yan Liu. Do Transformers Really Perform

Badly for Graph Representation? In Thirty-Fifth Conference on Neural Infor-

mation Processing Systems, 2021. 1, 46

[10] Yu Shi, Shuxin Zheng, Guolin Ke, Yifei Shen, Jiacheng You, Jiyan

He, Shengjie Luo, Chang Liu, Di He, and Tie-Yan Liu. Benchmarking

Graphormer on Large-Scale Molecular Modeling Datasets. arXiv preprint

arXiv:2203.04810, 2022. 1

[11] Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar. Chem-

BERTa: Large-scale self-supervised pretraining for molecular property pre-

diction. arXiv preprint arXiv:2010.09885, 2020. 1, 9, 21

[12] Philippe Schwaller, Benjamin Hoover, Jean-Louis Reymond, Hendrik

Strobelt, and Teodoro Laino. Unsupervised attention-guided atom-

mapping. 2020. 1

[13] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard

Zemel, Wieland Brendel, Matthias Bethge, and Felix A Wichmann.

Shortcut learning in deep neural networks. Nature Machine Intelligence,

2(11):665–673, 2020. 2, 14

[14] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy.

Domain Generalization: A Survey. CoRR, abs/2103.02503, 2021. 2, 14

[15] Abolfazl Farahani, Sahar Voghoei, Khaled Rasheed, and Hamid R Arab-

nia. A brief review of domain adaptation. Advances in data science and infor-

mation engineering, pages 877–894, 2021. 2, 14

[16] Peter Ertl. Cheminformatics analysis of organic substituents: identifica-

tion of the most common substituents, calculation of substituent proper-

ties, and automatic identification of drug-like bioisosteric groups. Journal

of chemical information and computer sciences, 43(2):374–380, 2003. 2

50

https://openreview.net/forum?id=OeWooOxFwDa
https://openreview.net/forum?id=OeWooOxFwDa
https://arxiv.org/abs/2203.04810
https://arxiv.org/abs/2203.04810
https://arxiv.org/abs/2103.02503


REFERENCES

[17] Regine S Bohacek, Colin McMartin, and Wayne C Guida. The art and

practice of structure-based drug design: a molecular modeling perspective.

Medicinal research reviews, 16(1):3–50, 1996. 2

[18] Markus Rudin and Ralph Weissleder. Molecular imaging in drug discov-

ery and development. Nature reviews Drug discovery, 2(2):123–131, 2003. 4

[19] Mark A Lindsay. Target discovery. Nature Reviews Drug Discovery, 2(10):831–

838, 2003. 3

[20] Ricardo Macarron, Martyn N Banks, Dejan Bojanic, David J Burns,

Dragan A Cirovic, Tina Garyantes, Darren VS Green, Robert P

Hertzberg, William P Janzen, Jeff W Paslay, et al. Impact of high-

throughput screening in biomedical research. Nature reviews Drug discovery,

10(3):188–195, 2011. 4

[21] Hypothesis management in the DMTA cycle, Apr 2021. 5

[22] Steven S Wesolowski and Dean G Brown. The strategies and politics of

successful design, make, test, and analyze (dmta) cycles in lead generation.

Lead Generation, pages 487–512, 2016. 4

[23] Albert P Li. Screening for human ADME/Tox drug properties in drug

discovery. Drug discovery today, 6(7):357–366, 2001. 4

[24] Ross D King, Jonathan D Hirst, and Michael JE Sternberg. New ap-

proaches to QSAR: neural networks and machine learning. Perspectives in

Drug Discovery and Design, 1(2):279–290, 1993. 5

[25] Patrick Cramer. AlphaFold2 and the future of structural biology. Nature

Structural & Molecular Biology, 28(9):704–705, 2021. 6

[26] Alexander B. Tong, Jason D. Burch, Daniel McKay, Carlos Bustamante,

Michael A. Crackower, and Hao Wu. Could AlphaFold revolutionize

chemical therapeutics? Nature Structural & Molecular Biology, 28(10):771–772,

Oct 2021. 6

[27] Kirill Veselkov, Guadalupe Gonzalez, Shahad Aljifri, Dieter Galea,

Reza Mirnezami, Jozef Youssef, Michael Bronstein, and Ivan Lapono-

gov. HyperFoods: Machine intelligent mapping of cancer-beating

molecules in foods. Scientific reports, 9(1):1–12, 2019. 6

51

https://www.massbio.org/news/member-news/hypothesis-management-in-the-dmta-cycle/
https://doi.org/10.1038/s41594-021-00670-x
https://doi.org/10.1038/s41594-021-00670-x


REFERENCES

[28] Pablo Gainza, Freyr Sverrisson, Frederico Monti, Emanuele Rodola,

D Boscaini, MM Bronstein, and BE Correia. Deciphering interaction fin-

gerprints from protein molecular surfaces using geometric deep learning.

Nature Methods, 17(2):184–192, 2020. 6

[29] Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres

Cubillos-Ruiz, Nina M Donghia, Craig R MacNair, Shawn French, Lind-

sey A Carfrae, Zohar Bloom-Ackermann, et al. A deep learning ap-

proach to antibiotic discovery. Cell, 180(4):688–702, 2020. 6

[30] Tiago Sousa, João Correia, Vítor Pereira, and Miguel Rocha. Gener-

ative Deep Learning for Targeted Compound Design. Journal of Chemical

Information and Modeling, 61(11):5343–5361, Nov 2021. 6

[31] Julien Horwood and Emmanuel Noutahi. Molecular design in syntheti-

cally accessible chemical space via deep reinforcement learning. ACS omega,

5(51):32984–32994, 2020. 6

[32] Benjamin Sanchez-Lengeling and Alán Aspuru-Guzik. Inverse molecular

design using machine learning: Generative models for matter engineering.

Science, 361(6400):360–365, 2018. 6, 7

[33] Thomas Blaschke, Josep Arús-Pous, Hongming Chen, Christian Mar-

greitter, Christian Tyrchan, Ola Engkvist, Kostas Papadopoulos, and

Atanas Patronov. REINVENT 2.0: an AI tool for de novo drug design.

Journal of Chemical Information and Modeling, 60(12):5918–5922, 2020. 6, 29

[34] Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure

Leskovec, Connor W Coley, Cao Xiao, Jimeng Sun, and Marinka Zitnik.

Therapeutics Data Commons: Machine Learning Datasets and Tasks for

Drug Discovery and Development. Proceedings of Neural Information Processing

Systems, NeurIPS Datasets and Benchmarks, 2021. 8, 13, 15, 21, 25, 40

[35] David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Jour-

nal of chemical information and modeling, 50(5):742–754, 2010. 8, 21

[36] Joseph L Durant, Burton A Leland, Douglas R Henry, and James G

Nourse. Reoptimization of MDL keys for use in drug discovery. Journal of

chemical information and computer sciences, 42(6):1273–1280, 2002. 8, 21

52

https://doi.org/10.1021/acs.jcim.0c01496
https://doi.org/10.1021/acs.jcim.0c01496


REFERENCES

[37] Adrià Cereto-Massagué, María José Ojeda, Cristina Valls, Miquel

Mulero, Santiago Garcia-Vallvé, and Gerard Pujadas. Molecular fin-

gerprint similarity search in virtual screening. Methods, 71:58–63, 2015. 8

[38] Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Hua Gao, An-

gel Guzman-Perez, Timothy Hopper, Brian P Kelley, Andrew Palmer,

Volker Settels, et al. Are learned molecular representations ready for

prime time? 2019. 8

[39] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,

and S Yu Philip. A comprehensive survey on graph neural networks. IEEE

transactions on neural networks and learning systems, 32(1):4–24, 2020. 8

[40] David Weininger. SMILES, a chemical language and information system.

1. Introduction to methodology and encoding rules. Journal of chemical in-

formation and computer sciences, 28(1):31–36, 1988. 8

[41] Igor V Tetko, Pavel Karpov, Ruud Van Deursen, and Guillaume Godin.

State-of-the-art augmented NLP transformer models for direct and single-

step retrosynthesis. Nature communications, 11(1):1–11, 2020. 8

[42] Peter W Atkins and Ronald S Friedman. Molecular quantum mechanics. Ox-

ford university press, 2011. 9

[43] Chanin Nantasenamat, Chartchalerm Isarankura-Na-Ayudhya,

Thanakorn Naenna, and Virapong Prachayasittikul. A practical

overview of quantitative structure-activity relationship. 2009. 9

[44] A Crum-Brown and TR Fraser. The connection of chemical constitution

and physiological action. Trans R Soc Edinb, 25(1968-1969):257, 1865. 9

[45] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke,

Di He, Yanming Shen, and Tie-Yan Liu. Do transformers really perform

badly for graph representation? Advances in Neural Information Processing

Systems, 34:28877–28888, 2021. 9, 21

[46] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing

Huang, and Junzhou Huang. Self-Supervised Graph Transformer on Large-

Scale Molecular Data, 2020. 9

53



REFERENCES

[47] Hannes Stärk, Dominique Beaini, Gabriele Corso, Prudencio Tossou,

Christian Dallago, Stephan Günnemann, and Pietro Liò. 3D Info-

max improves GNNs for Molecular Property Prediction. arXiv preprint

arXiv:2110.04126, 2021. 9

[48] Nathan Frey, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael

Gomez-Bombarelli, Connor Coley, and Vijay Gadepally. Neural Scaling

of Deep Chemical Models. 2022. 9, 46

[49] Joanna S Jaworska, M Comber, C Auer, and CJ Van Leeuwen. Summary

of a workshop on regulatory acceptance of (Q) SARs for human health and

environmental endpoints. Environmental health perspectives, 111(10):1358–1360,

2003. 12

[50] OECD. Guidance Document on the Validation of (Quantitative) Structure-Activity

Relationship [(Q)SAR] Models. 2014. 12

[51] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized

out-of-distribution detection: A survey. arXiv preprint arXiv:2110.11334, 2021.

12

[52] Kunal Roy, Supratik Kar, and Rudra Narayan Das. Understanding the basics

of QSAR for applications in pharmaceutical sciences and risk assessment, chapter

Validation of QSAR Models, pages 231–289. Academic press, 2015. 12, 13

[53] Domenico Gadaleta, Giuseppe Felice Mangiatordi, Marco Catto, An-

gelo Carotti, and Orazio Nicolotti. Applicability domain for QSAR

models: where theory meets reality. International Journal of Quantitative

Structure-Property Relationships (IJQSPR), 1(1):45–63, 2016. 12

[54] Joanna Jaworska, Nina Nikolova-Jeliazkova, and Tom Aldenberg. QSAR

applicability domain estimation by projection of the training set in descrip-

tor space: a review. Alternatives to laboratory animals, 33(5):445–459, 2005. 12

[55] Tatiana I Netzeva, Andrew P Worth, Tom Aldenberg, Romualdo Be-

nigni, Mark TD Cronin, Paola Gramatica, Joanna S Jaworska, Scott

Kahn, Gilles Klopman, Carol A Marchant, et al. Current status of

54

https://www.oecd-ilibrary.org/content/publication/9789264085442-en
https://www.oecd-ilibrary.org/content/publication/9789264085442-en


REFERENCES

methods for defining the applicability domain of (quantitative) structure-

activity relationships: The report and recommendations of ECVAM work-

shop 52. Alternatives to Laboratory Animals, 33(2):155–173, 2005. 12

[56] Ishaan Gulrajani and David Lopez-Paz. In Search of Lost Domain Gener-

alization. CoRR, abs/2007.01434, 2020. 12, 15, 40

[57] Robert P Sheridan. Time-split cross-validation as a method for estimating

the goodness of prospective prediction. Journal of chemical information and

modeling, 53(4):783–790, 2013. 13

[58] Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden,

Hua Gao, Angel Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam

Mathea, et al. Analyzing learned molecular representations for property

prediction. Journal of chemical information and modeling, 59(8):3370–3388, 2019.

13, 30

[59] Katsuhisa Morita, Tadahaya Mizuno, and Hiroyuki Kusuhara. Investiga-

tion of a Data Split Strategy Involving the Time Axis in Adverse Event

Prediction Using Machine Learning. Journal of Chemical Information and Mod-

eling, 0(0):null, 0. PMID: 35971760. 13

[60] Guy W Bemis and Mark A Murcko. The properties of known drugs. 1.

Molecular frameworks. Journal of medicinal chemistry, 39(15):2887–2893, 1996.

13

[61] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie,

Marvin Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga,

Richard Lanas Phillips, Sara Beery, Jure Leskovec, Anshul Kundaje,

Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang. WILDS:

A Benchmark of in-the-Wild Distribution Shifts. CoRR, abs/2012.07421,

2020. 13, 14, 15

[62] Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Long-Kai Huang,

Tingyang Xu, Yu Rong, Lanqing Li, Jie Ren, Ding Xue, et al. DrugOOD:

Out-of-Distribution (OOD) Dataset Curator and Benchmark for AI-aided

Drug Discovery–A Focus on Affinity Prediction Problems with Noise An-

notations. arXiv preprint arXiv:2201.09637, 2022. 13, 15, 40

55

https://arxiv.org/abs/2007.01434
https://arxiv.org/abs/2007.01434
https://doi.org/10.1021/acs.jcim.2c00765
https://doi.org/10.1021/acs.jcim.2c00765
https://doi.org/10.1021/acs.jcim.2c00765
https://arxiv.org/abs/2012.07421
https://arxiv.org/abs/2012.07421


REFERENCES

[63] Ye Hu, Dagmar Stumpfe, and Jürgen Bajorath. Computational explo-

ration of molecular scaffolds in medicinal chemistry: miniperspective. Jour-

nal of medicinal chemistry, 59(9):4062–4076, 2016. 14

[64] Csaba Szántai-Kis, István Kövesdi, György Kéri, and László Örfi. Vali-

dation subset selections for extrapolation oriented QSPAR models. Molec-

ular diversity, 7(1):37–43, 2003. 13, 30

[65] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Wenjun Zeng,

and Tao Qin. Generalizing to Unseen Domains: A Survey on Domain

Generalization. arXiv preprint arXiv:2103.03097, 2021. 14

[66] Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from

several related classification tasks to a new unlabeled sample. Advances in

neural information processing systems, 24:2178–2186, 2011. 14

[67] Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain

generalization via invariant feature representation. In International Conference

on Machine Learning, pages 10–18. PMLR, 2013. 14

[68] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz.

Invariant risk minimization. arXiv preprint arXiv:1907.02893, 2019. 15

[69] Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University

Press, USA, 2nd edition, 2009. 15

[70] Judea Pearl and Dana Mackenzie. The book of why: the new science of cause

and effect. Basic books, 2018. 15

[71] Vladimir Vapnik. The nature of statistical learning theory. Springer science &

business media, 1999. 15

[72] Paul Bertin, Jarrid Rector-Brooks, Deepak Sharma, Thomas Gaudelet,

Andrew Anighoro, Torsten Gross, Francisco Martinez-Pena, Eileen L

Tang, Cristian Regep, Jeremy Hayter, et al. Recover: sequential model

optimization platform for combination drug repurposing identifies novel

synergistic compounds in vitro. arXiv preprint arXiv:2202.04202, 2022. 15

[73] Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic un-

certainty in machine learning: An introduction to concepts and methods.

Machine Learning, 110(3):457–506, 2021. 16

56



REFERENCES

[74] Moksh Jain, Salem Lahlou, Hadi Nekoei, Victor Butoi, Paul Bertin,

Jarrid Rector-Brooks, Maksym Korablyov, and Yoshua Bengio. DEUP:

Direct epistemic uncertainty prediction. arXiv preprint arXiv:2102.08501, 2021.

16

[75] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell.

Simple and scalable predictive uncertainty estimation using deep ensem-

bles. Advances in neural information processing systems, 30, 2017. 16, 20

[76] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation:

Representing model uncertainty in deep learning. In international conference

on machine learning, pages 1050–1059. PMLR, 2016. 16

[77] Hugh Chen, Scott Lundberg, and Su-In Lee. Checkpoint ensem-

bles: Ensemble methods from a single training process. arXiv preprint

arXiv:1710.03282, 2017. 16

[78] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001. 16, 20

[79] Carl Edward Rasmussen. Gaussian processes in machine learning. In Sum-

mer school on machine learning, pages 63–71. Springer, 2003. 16, 20

[80] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Se-

bastian Nowozin, Joshua Dillon, Balaji Lakshminarayanan, and Jasper

Snoek. Can you trust your model’s uncertainty? evaluating predictive un-

certainty under dataset shift. Advances in neural information processing systems,

32, 2019. 16, 25

[81] Kehang Han, Balaji Lakshminarayanan, and Jeremiah Liu. Reliable graph

neural networks for drug discovery under distributional shift. arXiv preprint

arXiv:2111.12951, 2021. 16, 20

[82] Simon Haykin and N Network. A comprehensive foundation. Neural net-

works, 2(2004):41, 2004. 20

[83] Greg Landrum. RDKit: Open-Source Cheminformatics Software. 2016. 21

[84] Paola Gramatica. WHIM descriptors of shape. QSAR & Combinatorial Sci-

ence, 25(4):327–332, 2006. 21

57

https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4


REFERENCES

[85] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

Bert: Pre-training of deep bidirectional transformers for language under-

standing. arXiv preprint arXiv:1810.04805, 2018. 21

[86] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention

is all you need. Advances in neural information processing systems, 30, 2017. 21

[87] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Ob-

taining well calibrated probabilities using bayesian binning. In Twenty-Ninth

AAAI Conference on Artificial Intelligence, 2015. 25

[88] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,

Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson,

Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew

Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew

R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan

Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef

Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R.

Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul

van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Al-

gorithms for Scientific Computing in Python. Nature Methods, 17:261–272,

2020. 25

[89] David Mendez, Anna Gaulton, A Patrícia Bento, Jon Chambers, Mar-

leen De Veij, Eloy Félix, María Paula Magariños, Juan F Mosquera,

Prudence Mutowo, Michał Nowotka, et al. ChEMBL: towards direct

deposition of bioassay data. Nucleic acids research, 47(D1):D930–D940, 2019. 29

[90] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for

deep domain adaptation. In European conference on computer vision, pages 443–

450. Springer, 2016. 35

[91] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain,

Hugo Larochelle, François Laviolette, Mario Marchand, and Victor

Lempitsky. Domain-Adversarial Training of Neural Networks. 2015. 35

[92] Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, and Liu Ren. Improve

Unsupervised Domain Adaptation with Mixup Training, 2020. 35

58

https://arxiv.org/abs/1505.07818
https://arxiv.org/abs/2001.00677
https://arxiv.org/abs/2001.00677


REFERENCES

[93] Gilles Blanchard, Aniket Anand Deshmukh, Urun Dogan, Gyemin Lee,

and Clayton Scott. Domain generalization by marginal transfer learning.

arXiv preprint arXiv:1711.07910, 2017. 35

[94] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang,

Jonathan Binas, Dinghuai Zhang, Remi Le Priol, and Aaron Courville.

Out-of-Distribution Generalization via Risk Extrapolation (REx), 2020. 35

[95] Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Yoshua Bengio, Ioan-

nis Mitliagkas, and Irina Rish. Invariance Principle Meets Information

Bottleneck for Out-of-Distribution Generalization, 2021. 35

[96] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and

Masanori Koyama. Optuna: A Next-generation Hyperparameter Opti-

mization Framework. In Proceedings of the 25rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2019. 43, 44

[97] Max Welling and Thomas N Kipf. Semi-supervised classification with

graph convolutional networks. In J. International Conference on Learning Rep-

resentations (ICLR 2017), 2016. 46

[98] Xinyuan Lin, Chi Xu, Zhaoping Xiong, Xinfeng Zhang, Ningxi Ni, Bolin

Ni, Jianlong Chang, Ruiqing Pan, Zidong Wang, Fan Yu, et al. PanGu

Drug Model: Learn a Molecule Like a Human. bioRxiv, 2022. 46

59

https://arxiv.org/abs/2003.00688
https://arxiv.org/abs/2106.06607
https://arxiv.org/abs/2106.06607

	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 The Drug Discovery Process
	2.2 Applications of ML in Drug Discovery
	2.3 Molecular Data
	2.3.1 Molecular representations
	2.3.2 Pre-training techniques


	3 Related Work
	3.1 Model Analysis: Applicability Domain
	3.2 Model Selection: Data Split
	3.2.1 Temporal split
	3.2.2 Scaffold-based split
	3.2.3 Extrapolation-oriented split

	3.3 Model Design: Domain Generalization and Adaptation
	3.4 Uncertainty Estimation

	4 Molecular Out-Of-Distribution (MOOD)
	4.1 The MOOD specification
	4.1.1 Where to generalize to?
	4.1.2 A continuous, distance-based OOD definition
	4.1.3 Validation of the assumed OOD definition
	4.1.4 A protocol for replicating realistic shifts

	4.2 The MOOD investigation
	4.2.1 Tools to improve generalization
	4.2.2 The effect and importance of different tools
	4.2.3 Gap between current standards and the MOOD framework

	4.3 Experimental setup
	4.3.1 Baseline experiment
	4.3.2 RCT experiment


	5 Conclusion
	5.1 Summary
	5.2 Future work
	5.2.1 Expand the RCT
	5.2.2 Investigating different OOD metrics
	5.2.3 Synergy


	References

